翻訳と辞書
Words near each other
・ Exserohilum antillanum
・ Exserohilum curvatum
・ Exserohilum curvisporum
・ Exserohilum echinochloae
・ Exserohilum heteropogonicola
・ Exserohilum inaequale
・ Exserohilum longirostratum
・ Exserohilum oryzicola
・ Exserohilum oryzinum
・ Exserts
・ Exshaw
・ Exshaw Formation
・ Exsilirarcha
・ EXSLT
・ Exsonvaldes
Exsphere (polyhedra)
・ Exstetra
・ Exstream Software
・ Exstreamer
・ Exsudoporus
・ Exsudoporus floridanus
・ Exsudoporus frostii
・ Exsudoporus permagnificus
・ Exsufflation
・ Exsul Familia
・ Exsula
・ Exsultate, jubilate
・ Exsultet
・ Exsuperius Weston Turnor
・ Exsurge Domine


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Exsphere (polyhedra) : ウィキペディア英語版
Exsphere (polyhedra)
In geometry, the exsphere of a face of a regular polyhedron is the sphere outside the polyhedron which touches the face and the planes defined by extending the adjacent faces outwards. It is tangent to the face externally and tangent to the adjacent faces internally.
It is the 3-dimensional equivalent of the excircle.
The sphere is more generally well-defined for any face which is a regular
polygon and delimited by faces with the same dihedral angles
at the shared edges. Faces of semi-regular polyhedra often
have different types of faces, which define exspheres of different size with each type of face.
== Parameters ==
The exsphere touches the face of the regular polyedron at the center
of the incircle of that face. If the exsphere radius is denoted , the radius of this incircle
and the dihedral angle between the face and the extension of the
adjacent face , the center of the exsphere
is located from the viewpoint at the middle of one edge of the
face by bisecting the dihedral angle. Therefore
:\tan\frac = \frac}.
is the 180-degree complement of the
internal face-to-face angle.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Exsphere (polyhedra)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.